Sri Sathya Sai College for Women, Bhopal
(An Autonomous College Affiliated to Barkatullah University Bhopal)
Department of Higher Education, Govt. of M.P.
Under Graduate Syllabus (Annual Pattern)
As recommended by Central Board of Studies and approved by the Governor of M. P.
wef 2022-2023
(Session 2023-24)

(NEP-2020)
Class B.C.A.
Year IT Year
Subject Computer Applications
Course Title Database Management Systems Using PL/SQL
Course Type Core Course (Major II)
Credit Value -+
Max. Mark 30+70 (Minimum Marks 35)

Course Outcome: After the completion of this course. a student shall be able to:

e Explain the features of database management systems and relational database.

 Design conceptual models of a database using ER modelling for real life applications and construct
queries in relational algebra.

e Create and populate a RDBMS for a real-life application, with constraints and keys, using SQL.

* Retrieve any type of information from a database by formulating complex queries in SQL.

e Analyse the existing design of a database schema and apply concepts of normalization to design an

optimal database.

Particular

Unit I Introduction to DBMS:

Why database? Characteristics of data in database, DBMS. What are database advantages
of DBMS?

Database Architecture and Modelling: Conceptual, physical and logical database
models, Role of DBA, Database design.

Entity Relationship (ER) Model: Components of ER-model, ER modeling symbols,
Relationships.

Enhanced Entity Relationship (EER) Model: An Introduction, Superclass and
subclass entity types, Specialization, Generalization, Attribute inheritance.
Categorization & Aggregation.

Keywords: DBMS, DBA, Entity Relationship (ER). EER. Superclass, Subclass,
Specialization, Generalization, Categorization & Aggregation.

Unit 11 The Relational Data Model:

Fundamental Concepts: Relations, Null Values, Keys, Foreign Keys, Integrity
Constraints — Entity Integrity & Relational Integrity.

Normalization Process: First Normal Form, Functional Dependencies, Second Normal
Form, Third Normal Form, Boyce-Codd Normal Form (BCNF), Fourth Normal Form:
Other Normal Forms — Fifth Normal Form & Domain/Key Normal Form.
Transforming a Conceptual Model to a Relational Model: Transforming Objects Sets
and Attributes, Transforming Models without External keys, Transforming
Specialization and Generalization, Object Sets, Transforming Relationships: One-One
Relationships, One-Many Relationships, Many-Many Relationships: Transforming
Aggregated Object Sets, Transforming Recursive Relationships.

Keywords: Keys, Normalization, BCNF, Aggregated Object Sets. Recursive
Relationship.

Unit 111 Relational database implementation:
(a) Relational Algebra and Calculus
Relational Algebra: Union, Intersection, Difference, Product, Select. Project.
Join-Natural, Theta & Outer Join, Divide, Assignment.
Relational Calculus: Target list & Qualifying Statement, The Existential
Quantifier, The Universal Quantifier.
Keywords: JOIN, Target list, Existential Quantifier, Universal Quantifier.
Unit IV Relational database implementation (continued):
(b) Relational Implementation with SQL
Relational Implementation: An Overview.
Schema and Table Definition: Schema definition, Data types & domains.
Defining Tables, Column Definition.
Data Manipulation: Simple Queries (SELECT, FROM, WHERE), Multiple-
Table Queries, Subqueries, Correlated Subqueries, EXISTS and NOT EXISTS
operators, Built-In Functions (SUM, AVG, COUNT, MAX and MIN), GROUP
BY and HAVING clause, Built-In Functions with Subqueries.
Relational Algebra Operations: UNION, INTERSECT, EXCEPT, JOIN
Database Change Operations: INSERT, UPDATE, DELETE, Using SQL with
Data Processing Languages; View Definition, Restrictions on View Queries and
Updates.
Keywords: Schema, SELECT, Data Manipulation, Database Change Operation, View.
Unit V Physical Database Systems

Introduction, Physical Access of the Database.

Physical Storage Media: Secondary Storage, Physical Storage Blocks.

Disk Performance Factors: Access Motion Time, Head Activation Time, Rotational
Delay, Data Transfer Rate, Data Transfer Time.

Data Storage Formats on Disk: Track Format, Record Format- Fixed-Length Records &
Variable-Length Records, Input/Output Management.

File Organizing and Addressing Methods: Sequential File Organization, Indexed
Sequential File Organization, Direct File Organization, Hashing: Static Hash Functions
and Dynamic Hash Functions.

Keywords: Disk Performance Factors, Sequential File Organization, Indexed Sequential
File Organization, Direct File Organisation, Hashing.

Suggestion Books:

Gary W. Hansen & James V. Hansen, “Database Management and Design”, 2nd Ed.,
2007, Prentice Hall of India Pvt. Ltd.

Instructional ~Software Research & Development (ISRD) Group, Lucknow
“Introduction to Database Management Systems™, 2006, Ace Series, Tata McGraw Hill
Publishing Company Limited, New Delhi.

Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database Systems”, 7th
Edition, 2016, Pcarson

Hipe, poee
NE '

Reference Books:

e Raghu Ramakrishnan & Johannes Gehrke, “Database Management Systems”, 3™
Edition, 2014, McGraw Hill Education

e C.J. Date, “An Introduction to Database Systerm”, 8" Edition, 2003, Pearson

e Abraham Silberschatz, Henry F. Korth, S. Sudharshan, “Database System Concepts”,

6™ Edition, 2010, Tata McGraw Hill

Suggestive digital platform web links
e https://en.wikipedia.org/wiko/Relational model
e http://en.wikipedia.org/wiki/Relational algebra

Suggested equivalent online courses
e NPTEL Course: Introduction to Database Systems or Database Design

Scheme of Marks:

Maximum Marks: 100

Continuous Comprehensive Evaluation (CCE): 30 marks, Term End Exam Theory: 70 marks

Internal Assessment: Continuous Class Test Assignment/ Presentation 30
Comprehensive Evaluation (CCE):
External Assessment: Section (A) Very Short questions 70
University Exam Section Section (B) Short questions
Time:03.00 Hours Section (C) Long questions

Total 100

Hih—
Mo

o

Sri Sathya Sai College for Women, Bhopal
(An Autonomous College Affiliated to Barkatullah University Bhopal)
Department of Higher Education, Govt. of M.P.
Under Graduate Syllabus (Annual Pattern)
As recommended by Central Board of Studies and approved by the Governor of M. P.
wef 2022-2023
(Session 2023-24)

(NEP-2020)
Class B.C.A.
Year Il Year
Subject Computer Applications
Course Title DBMS Using PL/SQL Lab
Course Type Core Course (Major II)
Credit Value 2
Max. Mark 30+70 (Minimum Marks 35)

Course Outcome: This lab is based on the theory course of DBMS. This lab course involves the
development of the practical skills in DBMS using MS-Access/Visual-FoxPro/SQL-Server/etc. This
course is an attempt to upgrade and enhance students’ theoretical skills and provide the hands-on
experience.
After the completion of this course, a student shall be able:

e To create Databases & views.

e Execute simple & advance SQL queries.

e Use DBMS tools in the areas of database applications.

Particular

Practicum details:

Students are required to practice the concepts learnt in the theory by designing and querying a database for
a chosen organization (Like: College, Library, Transport, etc). The teacher may devise appropriate weekly
lab assignments to help students practice the designing, querying a database in the context of example
database. Some suggestive list of experiments with their aim, problem definition, theory is given below:

Experiment-1

Aim: To draw ER Model and Relational Model for a given database. Show ER to Relational Model
reduction.

Resources used: MS-Access/Visual-FoxPro/SQL-Server/etc

Problem Definition: List the data requirements for the database of the company which keeps track of the company
employee, department and projects. The database designers provide the following description:

1. The company is organized into departments. Each department has unique name, unique number, and particular
employee to manage the department. We keep track of the start date and the employee begins managing the
department. The department has several locations.

2

The department controls a number of projects each of which has a unique name, unique number and a single

s, | CA (e 4

s

3. We store each employee names social security number, address, salary, sex and dob. An employee is assigned
one department but may work on several projects which are not necessarily controlled by the same department.
We keep track of the department of each employee works on each project and for insurance purpose. We keep
each dependent’s first name, sex, dob and relation.

Theory: The ER data model was developed to facilitate the database design by allowing specification of an
enterprise schema that represents the overall logical structure of the database. The ER model data model is one
of the several data models. The semantic aspect of the model lies in its representation of the meaning of the data.
The ER model is very useful many database design tools drawn on concepts from the ER model. The ER model
employs 3 basic notations: entity set, relationship set and attributes.

Symbols Used in ER Notation
;
Entity set: An entity is a set of entiies of the same
type that share the properties or attributes.
2.
| Ensey Name] Weak entity set: An entity set may not have sufficient
attnibutes to form a prmary key. Such an entity set is
termed as weak entity set.
3.
WWMAM:smam
among several entiies. A relationship set is a set of
mdltesarm!ype
4.
Identification relationship set for weak entity set :
mmpmmmmmsumm
identifying entity set is called the identifying relatsonship.
5.

@ Primary key : The pnmary key is used to denote a candidate
key that is chosen by the database designers as the principal

means of identifying entiies within an entity set.

10.

1.

12.

13.

14.

) <F

Attribute

Lauty

00

Total Generalization

Multi valued Attribute

Derived Attribute

Discriminating Attribute of weak entity set : The
discrimination of weak entity set is a set of attnbutes
that allows the distinction to be made.

Total Participation of entity set in
relationship: The participation of an
entity set E in a relatonship set R is said
to be total if every entity in E participates
in at least one relationship in R.

mc@rmcﬁ@

el

i 7

EMPLOYEE

@\

PERMANENT EMPLOYEE

et ER

dulywage

iV

<

D EMPLOYEE

Dependents
of

DEPENDENTS

Warks on

TEMPERORARY EMPLOYEE

8y

]

DEPARTMENT

Sy
=
o

Employee
fname SSN address salary | city deptno
|
Department
deptno l]deptname mgr_SSN
Department_Location
deptno | deptloc
|
Project
projno projname location deptno
Works on
SSN hours projname
Dependents
name1 relation bdate SSN
Employee Department Department Location
fsnsa:w deptno deptno
deptname deptloc
address mar SSN P
salary LSS
city
deptno
Project Works on Dependents
projno SSN namef
projname | | hours relation
location | | Projno bdate
deptno SSN

Conclusion: We have drawn ER model and Relational Model for the same.

-

Experiment-2
Aim: Implementation Database

1. Creation of Database with proper constraints (Pk, Fk......etc)

[S%]

. Insert into database using different types of insert statements

. Display

lad

Resources used: MS-Access/Visual-FoxPro/SQL-Server/etc

Theory: The set of relations in a database must be specifies to the system by means of a data definition language
(DDL). The SQL DDL allows specification of not only a set of relations but also specific information about the

relation including:

. The schema for each relation

. The domain of values associated with each attribute

. The integrity constraints

. The set of indices to be maintained for each relation

. The security and authorization information for each relation
. The physical storage structure of each relation on disk

N B LD P —

Create Table
create table tab (AD), AxD,, AuD,, <integrity constraini-1>,<integrity constraint-k>)

where tab is the name of the relation each A, is the name of the attribute in the schema of relation tab and D, is the
domain type of the values in the domain of attribute A;. There are a number of different allowable integrity
constraints. We specify here only the primary key for the relation.

Insert
A newly created relation is empty initially. We can use the insert command to load data into the relation.
insert into <table name=> values (4,, A,, Ay

The values are specified in the order in which the corresponding attributes are listed in the relation schema.

Display
To display the table after creation and insertion we use the following syntax:
select * from <table name>

Select clause is used to list the attributes desired in the result of a query. It corresponds to the projection operation
of the relational algebra. From clause lists the relations to be scanned in the evaluation of the expression. The asterisk

symbol (**7) is used to denote “all attributes”.

Conclusion

Thus, we have successfully created the database of company and inserted values in the database.

" @ﬂ/ A ol

Experiment-3]
Aim: Data Definition (schema) Modification

. Alter table: add column, remove column, add constraint, remove constraint
. Drop table

. Show schema of any table

. Applying different constraints check. not null, etc.

o S IS T N J—

Resources used: MS-Access/Visual-FoxPro/SQL-Server/etc

Theory: The various command, clauses, functions used for the modification of database are as follows:

(1) Alter table: Alter table command is used to add attribute to an existing relation. All the tuples are assigned to
null as the values for the new attribute. The form of the alter table command is

Alter table r add A D

Where, r is the name of an existing relation. A is the name of the attribute to be added and D is the domain of the
added attribute. We can drop attribute from a relation by the command:

Alter table r drop A

(2) Update: In certain situation we may wish to change a value in a tuple without changing all values in the tuple.
For this purpose, the update statement can be used. as we could for insert and delete. We can choose the tuple
be updated by using a query.

eg, update EMPLOYEE
set age=20
where SSN=514065
The preceding update statement is applied only to tuple where SSN=514065. If we want same changes in all

tuples, then we write

Update EMPLOYEE
set age=20

(3) Drop Table: To remove a relation from an SQL database we use the drop table command. The drop table
command deletes all information about the dropped relation from the database

drop table r

The relation r and to delete all tuples from r, the following command is used.

delete from r
(4) Adding and Removing Columns: To add a column to an existing relation, we use

alter table v
add A D

eg. alter table EMPLOYEE

add age int %
N\

o @ ﬂ/ o @ ’

To remove a column from an existing relation we use

Alter table r
drop column A

Eg. alter table EMPLOYEE

drop column age

(5) Not Null: The not null specification prohibits the insertion of a null value. For a attribute any database
modification that would cause null to be inserted in an attribute declared to be not null generates an error
diagnostic. If an attribute is declared as the primary key then it cannot take a null value.

Eg, alter table EMPLOYEE
alter column salary int NOT NULL

(6) Check: The heck clause in SQL can be applied to relation declarations as well to domain declarations when
applied to a relation declaration, the clause check(p) specified a predicate p that must be specified by every tuple
in a relation. A common use of the check clause is to ensure that the attribute value satisfy specified condition.

Eg, alter table EMPLOYEE
add constraint em_age
check (age>19)

Conclusion: Thus, we have executed all the queries required for the modification of database.

Experiment-4
Aim: Simple SQL queries (Single table retrieval)

1. Make use of different operators (relational, logical etc.)

2. Selection of rows and columns, renaming columns, use of distinct keyword
3. String handling (%, etc.)

4. Update statement, case update

3. Delete, cascade delete (if possible)

Resources used: MS-Access/Visual-FoxPro/SQL-Server/etc

Theory:

1. Select clause: Select clause is used to list the attributes desired in the result of a query. It corresponds to the
projection operation of the relational algebra:

Eg. select *from EMPLOYEE

-all attributes

select fname, SSN from EMPLOYEE
-only fname and SSN

2. from clause: From clause lists the relations to be scanned in the evaluation of the expansion.

3.where clause: The where clause corresponds to the selection predicate of the relational algebra. It consists of a
predicate involving attribute of the relations that appear in the from clause.

(i) and: and clause is used when we want a result and all the conditions are satisfied in the where clause.

True and unknown = true

False and unknown = unknown
Unknown or unknown = unknown Cﬂrﬁ (‘({}C,/—
o)

i

A

\\SS@ @ ﬁ A’{’“’W 11

(ii) as (Rename operator): SQL provides a mechanism for renaming both relations and attributes. It uses the as
clause taking the form
old name as new name

(iii) distinct: 1f we want to eliminate duplicates, we use the keyword distinct in the aggregation expression.

eg. select distinct salary
from EMPLOYEE
(iv) String operations: The most commonly used operations on strings are pattern matching using the operation

like we describe the patterns by using the two special characters % and .

%: The % character matches any substring
_t The character matches any character

eg, "Perry%’ matches any string beginning with “Perry”.
“%idge%’ matches any string containing “idge™ as substring
* " matches any string of exactly three characters
* %" matches any string of at least three characters

(v) Update and Case Update: In certain situations, we may wish to change a value in a tuple without changing all
the values in the tuple. For this purpose, the update statement can be used.

eg. update EMPLOYEE
set age=20
where SSN=314065
SQL provides a case construct which we can use to perform both the update with a single update statement
avoiding the problem with the order of updates.

eg. update account
set balance =case
when balance<=1000
then balance*1.05
else balance*1.06
end
(vi) delete: To delete a tuple from relation r, we use the following command

delete from r

where, r is the name of the relation

Conclusion: Thus, we have executed simple queries in SQL.

Experiment-5

Aim: Advanced SQL Queries-1

. Group by, having clause, aggregate function
. Set operations like union, union all and use of order by clause

1
2
3. Nested queries: in, not_in, exists, not exists and any, all

Resources used: MS-Access/Visual-FoxPro/SQL-Server/etc C_\‘&M @)ﬁ

s _#

N @ﬁ/w)

Theory:

1. Group by clause: These are circumstances where we would like to apply the aggregate functions to a single set
of tuples but also to a group of sets of tuples, we would like to specify this wish in SQL using the group by clause.
The attributes or attributes given by the group by clause are used to form groups. Tuples with the same value on all
attributes in the group by clause placed in one group:
eg.

select dept_no, avg(sal) as avg sal

from EMPLOYEE

group by dept_no

2. Having clause: A having clause is like a where clause but only applies only to groups as a whole whereas the
where clause applies to the individual rows. A query can contain both where clause and a having clause. In that case

a. The where clause is applied first to the individual rows in the tables or table structures objects in the diagram
pane. Only the rows that meet the conditions in the where clause are grouped.

b. The having clause is then applied to the rows in the result set that are produced by grouping. Only the groups
that meet the having conditions appear in the query output.
eg.

select dept_no from EMPLOYEE

group by dept_no

having avg (salary) >=all

(select avg (salary)
from EMPLOYEE
group by dept_no)

3. Aggregate functions: Aggregate functions such as SUM, AVG, count, count (*), MAX and MIN generate
summary values in query result sets. An aggregate functions (with the exception of count (*) processes all the
selected values in a single column to produce a single result value:

eg.
select dept_no, count (*)
from EMPLOYEE
group by dept_no

eg.
select max(salary) as maximum
from EMPLOYEE

eg.
select sum(salary) as total salary
from EMPLOYEE

eg.
select min(salary) as minsal
from EMPLOYEE

4. Union and Union Operators: Combines the result of two or more queries into a single result set consisting of all
the rows belonging to all queries in the union. This is different from using joins that combine columns from two
tables. Two basic rules for combining the result sets of two queries with union are:

A. The number and the order of the columns must be identical in all queries.
B. The data types must be compatible:

select max(salary) as maximum

Sfrom EMPLOYEE

union

select min(salary)

from EMPLOYEE . 2

Pde O

N~

union
Specifies that multiple result two or more queries into a single result set consisting of all the rows belonging to

all queries into single result set consisting of all the rows belonging to all queries in the union. This is different
from using joins that combine columns from two tables. Two basic rules are followed.

5. Order by clause: SQL allows the user to order the tuples in the result set of the query of a query by the values of
one or more attributes using the order by clause. The default order is in the increasing order of values. We can

specify the keyword DES if we want values in descending order.

6. Exists and not exists: Subqueries introduced with exists and not queries can be used for two seet theory
operations: Intersection and Difference. The intersection of two sets contains all elements that belong to both of
the original sets. The difference contains elements that belong to only first of the two sets.

eg.
select *from DEPARTMENT
where exists (select * from PROJECT
where DEPARTMENT . dept no=PROJECT.dept no)

7. IN and NOT IN: SQL allows testing tuples for membership in a relation. The “IN™ connective tests for set
membership where the set is a collection of values produced by select clause. The “NOT IN” connective tests for
the absence of set membership. The IN and NOT IN connectives can also be used on enumerated sets.

eg.
select proj _name from PROJECT
where dept_no not in (select dept_no from DEPARTMENT
where dept name="chemistry"’)
eg.
select fname from EMPLOYEE
where SSN in (select mgr SSN from DEPARTMENT)

Conclusion: Thus, we have studied and executed all the queries mentioned using various clauses.

Experiment-6

Aim: Advanced SQL Queries -2.

(1) Join (Inner & Outer)
(2) Exists & Union

Resources used: MS-Access/Visual-FoxPro/SQL-Server/etc

Theory:

JOINS: SQL joins are used to query data from two or more tables, based on a relationship between certain columns
in these tables.

Type of JOIN:
e Equi Joins:
This operation allows to connect, with a relation of equality, the tables which have at least a common attribute.
One must have n-/ conditions of join, # being the number of tables which intervene in the query.
If no condition of join is specified, the corresponding query will realize the Cartesian product of the implied
tables.
Syntax:

SELECT TABLEI .coll, TABLEI.col2...
TABLE2.coll, TABLE2.col2...

2 e

FROM table namel, table name2
WHERE table namel.coll = table_name2.col2

TYPE OF Equi-Joins:
An equi-join is further classified into two categories:

(a) Inner Join
(b) Outer Join

(a) Inner Join:
The INNER JOIN keyword return rows when there is at least one match in both tables.

Syntax:
SELECT column_name(s)
FROM table _namel
INNER JOIN table name?2
ON table namel.column _name=table name2.column_name

(b) Outer Joins:
The outer join is returning all the rows returned by simple join or equijoin as well as those rows from one
table that do not match any row from the other table, the symbol (+) represents outer join. the outer table

operator can appear only on side of the expression.

Type of Outer Joins:
e Left OUTER JOIN: Return all rows from the left table, even if there are no matches in the right table.
Syntax:
SELECT TABLEI.column.....
TABLE2.column.....
FROM table namel, table name2
WHERE table namel.column(+) = table_name2.column;

e Right OUTER JOIN: Return all rows from the right table, even if there are no matches in the left table.
Syntax:
SELECT TABLE!.column.....
TABLE2.colummn.....
FROM table namel table name2
WHERE table namel.column = table name2.column(+);

EXISTS uses a subquery as a condition, where the condition is True if the subquery returns any rows, and False if
the subquery does not return any rows.

Syntax:
SELECT columns
FROM tables
WHERE EXISTS (subquery);
UNION

There are occasions where you might want to see the results of multiple queries together, combining their output;
use UNION.

The SQL UNION operator combines two or more SELECT statements.

Syntax:

SELECT column_name(s) FROM table_namel
UNION
SELECT column_name(s) FROM table_name?

Notice that SQL requires that the Select list (of columns) must match, column-by-column, in data type This concept
is useful in situations where a primary key is related to a foreign key, but the foreign key value for some primary
keys is NULL. For example, in one table, the primary key is a salesperson, and in another table is customers, with

& W C%ﬁ%w >

their salesperson listed in the same row. However, if a salesperson has no customers, that person's name won't appear
in the customer table.

Conclusion: Thus, we have studied and executed all the queries mentioned using various clauses.

Experiment-7

Aim: Implementation of views.
1. Creation of views
2. Usage of views
3. Creation of views using views
4. Drop view

Resources used: MS-Access/Visual-FoxPro/SQL-Server/etc

Theory:

Views: Any relation that is not part of any logical model but is made visible to the user as a virtual relation is called
as a view. It is possible to support a large number of views on the top of any given set of actual database relation.
Views help in 2 ways:

1. For security purpose
2. Create a personalized collection of relation that is better user’s intuition than is logical model

Creation of Views:
I. Views is defined using ‘create view” command
2. To define a view we must give the view a better name and must state the query that computes the view.

Syntax:
create view<view name> as <query expression=
Where query expression is any legal query expression.
3. Once we have defined a view, we can use the view name to refer to the virtual relation that the view
generation.
4. Attribute name of the view can be specified explicitly as:
Create view V(VA,, VA, ... VA,) as select (41,4,, Ay) from R; where(p)
where, p: predicate
R;: relation
Aj-Aq: attribute of view
V: view name

Creation of views using VIEW:

Since, view relations may appear in any place that a relation name may appear, except for restrictions on the use of
views in update expressions. Thus, one view may be used in the expression defining another view. For eg. Let
Emp work_info is a view with attribute F_name, SSN, Project_no, Work_hrs. Then creation of other view can be

done as:
create view new_view
select [name, work hrs
from emp work_info
Updating of views

Although views are useful for the queries, they present a serious problem. If we express updates insertion or deletion
on view as the modification done to the database in terms of the views must be translated to a modification to actual

relations in the logical methods of database,

Drop view

A view creates earlier can be dropped using ‘Drop View’ command

G

i

Syntax:
Drop view 'r’
where, r: View Name.

[t deletes all the information about view from the database.

Conclusion: Thus, we have concluded the project by studying and implementing the concept of views in SQL

Suggestion Books:
e Dr Rajeev Chopra, “Database Management System (DBMS) A Practical Approach”,
2010, S Chand
e Jitendra Patel, “DBMS Lab Manual” Kindle Edition, 2012

Suggestive digital platform web links
e https://gfgc.kar.nic.in/raibag/FileHandler/270-101d616b-255a-4add-8d9b-
dd2e22fec7cl.pdf
e https://pesitsouth.pes.edu/pdf/2019/July/CS/LM_DBMS%20LAB.pdf

Scheme of Marks:

Maximum Marks: 100
Internal Class Interaction / Quiz 30

Assessment : | Attendance
Assignments (Charts / Model Seminar / Rural Service / Technology
Dissemination / Report of Excursion / Lab Visits / Survey / Industrial

visit)

External Viva Voce on Practical 70
Assessment: Practical Record File
Table Work / Experiments

Adse >
v
N2 :

17

